
ГЦФО-11

1	В начальный момент времени в схеме, изображенной на рисунке, ключ K разомкнут, конденсатор ёмкостью $2C$ имеет заряд q_0 , второй конденсатор не заряжен, ток в катушках индуктивности отсутствует. Конденсатор начинает разряжаться, и в момент времени, когда сила тока в цепи достигает максимального значения, ключ K замыкают. Найдите максимальную силу тока I_{max} , протекающего в дальнейшем через ключ K .	
2	Для поддержания незатухающих колебаний в колебательном контуре с малым сопротивлением, изображенном на рисунке, ёмкость конденсатора быстро увеличивают на небольшую величину ΔC каждый раз, когда напряжение на конденсаторе равно нулю, а через время, равное четверти периода колебаний, так же быстро возвращают в исходное состояние. Определите величину ΔC , если $L=0,1$ Гн, $C=0,1$ мк Φ , $R=30$ Ом.	$\left\{\begin{matrix} C \\ L \end{matrix}\right\} R$
3	Электрическая схема, состоит из батарейки, катушки индуктивностью L и четырех проводящих пластин площадью S каждая, расположенных на небольшом расстоянии d друг от друга. Известно, что после замыкания ключа максимальный ток, протекающий через катушку, равен I_0 . Найдите ЭДС батарейки. Чему равны заряды пластин в момент, когда ток через катушку максимален?	

электромагнитные колебания

