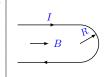
ГЦФО 11 Магнетизм-1 8 декабря 2021 г.

1	В неоднородном магнитном поле с индукцией $B=\alpha x~(x>0)$ стартует частица массой m и зарядом q с начальной скоростью v_0 , направленной вдоль оси X . Поле направлено вдоль оси Z . Определите максимальное смещение частицы вдоль оси X .
2	Равномерно заряженное кольцо радиусом R с линейной плотностью заряда ρ движется соосно аксиально-симметрично магнитному полю со скоростью v . Радиальная составляющая индукции магнитного поля на расстоянии r от оси равна B_r . Определите момент сил, действующих на кольцо. Докажите, что приращение момента импульса кольца пропорционально приращению потока магнитной индукции через него.
3	Жёсткая проволочная магнитная рамка с длиной каждой стороны a , сопротивлением R и массой m влетает в магнитное поле. Направление вектора магнитной индукции поля перпендикулярно плоскости рамки, а модуль меняется с высотой по закону $B(z) = B_0 - kz$, где B_0 и k — некоторые константы. Найдите установившуюся скорость рамки.
4	Проводник с током I , состоящий из двух параллельных участков, соединённых проволочной окружностью радиусом R , помещён в однородное магнитное поле индукцией B , направленное вдоль параллельных участков провода. Определите модуль силы, с которой магнитное поле действует на этот провод с током.
5	Определите индукцию магнитного поля в центре однородной металлической пластины, имеющей форму равностороннего треугольника со стороной l , если ток I подводится по проводам, присоединённым к двум вершинам треугольника. Магнитным полем подводящих проводов пренебречь.


 ГЦФО 11
 Магнетизм-1
 8 декабря 2021 г.

В неоднородном магнитном поле с индукцией $B=\alpha x\,(x>0)$ стартует частица массой m и зарядом q с начальной скоростью v_0 , направленной вдоль оси X. Поле направлено вдоль оси Z. Определите максимальное смещение частицы вдоль оси X.

Равномерно заряженное кольцо радиусом R с линейной плотностью заряда ρ движется соосно аксиально-симметрично магнитному полю со скоростью v. Радиальная составляющая индукции магнитного поля на расстоянии r от оси равна B_r . Определите момент сил, действующих на кольцо. Докажите, что приращение момента импульса кольца пропорционально приращению потока магнитной индукции через него.

Жёсткая проволочная магнитная рамка с длиной каждой стороны a, сопротивлением R и массой m влетает в магнитное поле. Направление вектора магнитной индукции поля перпендикулярно плоскости рамки, а модуль меняется с высотой по закону $B(z) = B_0 - kz$, где B_0 и k — некоторые константы. Найдите установившуюся скорость рамки.

Проводник с током I, состоящий из двух параллельных участков, соединённых проволочной окружностью радиусом R, помещён в однородное магнитное поле индукцией B, направленное вдоль параллельных участков провода. Определите модуль силы, с которой магнитное поле действует на этот провод с током.

Определите индукцию магнитного поля в центре однородной металлической пластины, имеющей форму равностороннего треугольника со стороной l, если ток I подводится по проводам, присоединённым к двум вершинам треугольника. Магнитным полем подводящих проводов пренебречь.