1	

СОДЕРЖАНИЕ

Предисловие .		5
	ПРЕДИСЛОВИЕ	

Эти проверочные работы предназначены в первую очередь для тех учеников, которые изучают геометрию в специализированных математических классах по учебнику А. Д. Александрова, А. Л. Вернера и В. И. Рыжика. (Возможно, их смогут использовать учителя математики, преподающие и по другим учебникам геометрии.) Проверочные работы написаны в том же духе, что и сам учебник. Подчеркну, что геометрия видится как неразрывное единство воображения и логики, поэтому я старался в каждой проверочной работе в той или иной степени создать условия для развития геометрического воображения.

При составлении этих работ я попытался учесть самые разные соображения. Перечислю некоторые из них.

Каждая конкретная работа должна быть реальной для ученика. Иначе говоря, какая-то часть работы может быть выполнена им, хотя и без тщательного оформления.

В то же время эта работа должна быть реальной и для учителя, т. е. удобной для проверки, а это значит, что она не должна содержать длинных доказательств, варианты должны быть схожими, почти идентичными, геометрические фигуры изначально получают фиксированные буквенные обозначения и т. д.

В большинстве случаев задания в самостоятельных и контрольных работах построены по принципу «стрелы заданий», идущих по нарастающей сложности, что обеспечивает некий уровень индивидуализации. Хотелось также в каждое задание добавить немного неожиданности для ученика.

В целом каждая работа получилась достаточно объёмной, и вряд ли большинство учеников будет выполнять все задания. В этом случае учитель может действовать по своему усмотрению. Можно уменьшить число заданий, можно увеличить время, отведённое для решения (самостоятельная

работа — 1 урок, контрольная работа — 2 урока), жёсткая система оценок вряд ли разумна, выкладки и ссылки учеников могут быть свёрнутыми. Вообще при работе на скорость (а таковой является любая самостоятельная работа, проводимая на уроке) ученики должны доверять своей пространственной интуиции, а учитель — быть не столь придирчивым по части обоснований.

Несколько технических замечаний:

- 1. Четырёхугольник *ABCD* или треугольник *ABC* будем считать нижним основанием призмы.
- 2. Если в задаче надо найти угол, то достаточно найти какую-либо его тригонометрическую функцию.

Предлагаемое пособие если и имеет аналогичных предшественников, то их не слишком много. Отсюда ясно, сколько у него может быть недостатков. Я буду признателен всем доброжелательным критикам. Все замечания и предложения можно присылать на мой электронный адрес: rvi@inbox.ru или на электронный адрес издательства «Просвещение»: irekman@prosv.ru.

Автор

САМОСТОЯТЕЛЬНЫЕ РАБОТЫ

С—1.1. Расстояние в пространстве

Вариант 1

В тетраэдре ABCD основанием является правильный треугольник ABC со стороной 1, DA = DC = 1. Точка K — середина DA, точка L — середина BC.

- **1.** Вычислите *KL*, если:
 - a) BD = 1;
 - б) $BD = \sqrt{2}$.
- **2.** Пусть BD = x.
 - а) Выразите KL как функцию от x.
 - б) Может ли KL быть перпендикулярным AD и BC одновременно?
 - в) Может ли KL быть длиннее каждого ребра данного тетраэдра?
 - Γ) В каких границах изменяется *KL* при изменении *BD*?

Вариант 2

В тетраэдре ABCD DA = DB = DC = 1. Основанием является равнобедренный треугольник ABC, причём AB = BC = 1. Точка K — середина AD, точка L — середина BC.

- **1.** Вычислите *KL*, если:
 - a) AC = 1;
 - б) $AC = \sqrt{2}$.
- **2.** Пусть AC = x.
 - а) Выразите KL как функцию от x.
 - б) Может ли KL быть перпендикулярным AD и BC одновременно?
 - в) Может ли KL быть длиннее каждого ребра данного тетраэдра?
 - г) В каких границах изменяется KL при изменении AC?

С—1.2. Сечения в тетраэдре

Вариант 1

ABCD — правильный тетраэдр. Точка K — середина AC, точка L — середина BC, точка M — середина DB, точка N — середина DA. Рассматриваются отрезки: а) AC; б) DK; в) KN; г) KM.

- 1. Нарисуйте сечение тетраэдра, проходящее через отрезки:
 - a) *AC* и *KM*;
 - б) *KN* и *KD*;
 - в) *KD* и *KM*;
 - г) *KN* и *KM*.
- **2.** Каким многоугольником (по числу сторон) является сечение этого тетраэдра, проходящее через:
 - a) *DK*;
 - б) *KN*;
 - в) *КМ*?

Нарисуйте эти сечения.

- **3.** Через какой из этих четырёх отрезков проходит сечение тетраэдра, являющееся:
 - а) равносторонним треугольником;
 - б) равнобокой трапецией;
 - в) квадратом;
 - г) параллелограммом (не квадратом);
 - д) прямоугольным треугольником?

Нарисуйте такие сечения, если это возможно.

Вариант 2

ABCD — правильный тетраэдр. Точка L — середина BC, точка M — середина DB, точка N — середина DA. Рассматриваются отрезки: а) BC; б) DL; в) LM; г) LN.

- 1. Нарисуйте сечение тетраэдра, проходящее через отрезки:
 - a) BC и LN;
 - б) *DL* и *LM*;
 - в) DL и LN;
 - г) *LM* и *LN*.
- **2.** Каким многоугольником (по числу сторон) является сечение этого тетраэдра, проходящее через:
 - a) *DL*;
 - б) *LM*;
 - в) *LN*?

Нарисуйте эти сечения.

- **3.** Через какой из этих четырёх отрезков проходит сечение тетраэдра, являющееся:
 - а) равносторонним треугольником;
 - б) равнобокой трапецией;
 - в) квадратом;
 - г) параллелограммом (не квадратом);
 - д) прямоугольным треугольником?

Нарисуйте такие сечения, если это возможно.

С—1.3. Взаимное положение двух прямых

Вариант 1

PABCD — правильная четырёхугольная пирамида, у которой все рёбра равны 1. В этой пирамиде проходит ломаная из четырёх звеньев. Все вершины ломаной лежат на поверхности пирамиды.

- **1.** Первое звено ломаной отрезок *KL*, где точка *K* середина ребра PB, $KL \perp AC$.
 - а) Нарисуйте КL.
 - б) Найдите длину KL.
- **2.** Второе звено ломаной отрезок LM, $LM \parallel AK$.
 - а) Нарисуйте *LM*.
 - б) Найдите длину *LM*.
- **3.** Третье звено ломаной отрезок MD.
 - a) Нарисуйте *MD*.
 - б) Найдите длину *MD*.
- **4.** Четвёртое звено ломаной отрезок DN, который лежит на прямой, пересекающей прямые AK и PC.
 - а) Нарисуйте звено *DN*, имеющее наибольшую длину.
 - б) Найдите длину DN.
- 5. Какое из этих четырёх звеньев самое длинное?

Вариант 2

- *PABCD* правильная четырёхугольная пирамида, у которой все рёбра равны 1. В этой пирамиде проходит ломаная из четырёх звеньев. Все вершины ломаной лежат на поверхности пирамиды.
- **1.** Первое звено ломаной отрезок *KL*, где точка *K* середина ребра *PA*, $KL \perp BD$.
 - а) Нарисуйте *KL*.
 - б) Найдите длину *KL*.
- **2.** Второе звено ломаной отрезок LM, $LM \parallel DK$.
 - а) Нарисуйте *LM*.
 - б) Найдите длину *LM*.
- **3.** Третье звено ломаной отрезок MC.
 - a) Нарисуйте *MC*.
 - б) Найдите длину MC.
- **4.** Четвёртое звено ломаной отрезок CN, который лежит на прямой, пересекающей прямые DK и PB.
 - а) Нарисуйте звено СN, имеющее наибольшую длину.
 - б) Найдите длину СN.
- 5. Какое из этих четырёх звеньев самое длинное?

С—1.4. Расстояния и сечения

Вариант 1

Ребро правильного тетраэдра ABCD равно 4. Точка K — середина ребра BD, точка L — середина ребра CD, точка M — середина ребра AC.

- **1.** Точка P середина ребра AD, точка Q середина ребра BC.
 - а) Нарисуйте общий отрезок сечений тетраэдра плоскостями KLM и PLQ.
 - б) Вычислите его длину.
- **2.** Точка P_1 лежит на ребре AD, $AP_1 = 1$, точка L_1 лежит на ребре CD, $CL_1 = 1$, точка Q_1 лежит на ребре CB, $CQ_1 = 1$.
 - а) Нарисуйте общий отрезок сечений тетраэдра плоскостями *KLM* и $P_1L_1Q_1$.
 - б) Вычислите его длину.
- **3.** Точки P_1 , L_1 , Q_1 лежат на тех же рёбрах тетраэдра, что и в задаче 2. При этом $AP_1 = CL_1 = CQ_1$.
 - а) Какой фигурой является сечение этого тетраэдра плоскостью $P_1L_1Q_1$?
 - б) В каких границах изменяется длина d общего отрезка сечений тетраэдра плоскостями KLM и $P_1L_1Q_1$?

Вариант 2

Ребро правильного тетраэдра ABCD равно 4. Точка K — середина ребра CD, точка L — середина ребра AD, точка M — середина ребра AB.

- **1.** Точка P середина ребра BD, точка Q середина ребра AC.
 - а) Нарисуйте общий отрезок сечений тетраэдра плоскостями KLM и PLQ.
 - б) Вычислите его длину.
- **2.** Точка P_1 лежит на ребре BD, $BP_1 = 1$, точка L_1 лежит на ребре AD, $AL_1 = 1$, точка Q_1 лежит на ребре AC, $AQ_1 = 1$.
 - а) Нарисуйте общий отрезок сечений тетраэдра плоскостями KLM и $P_1L_1Q_1$.
 - б) Вычислите его длину.
- **3.** Точки P_1 , L_1 , Q_1 лежат на тех же рёбрах тетраэдра, что и в задаче 2. При этом $BP_1 = AL_1 = AQ_1$.
 - а) Какой фигурой является сечение этого тетраэдра плоскостью $P_1L_1Q_1$?
 - б) В каких границах изменяется длина d общего отрезка сечений тетраэдра плоскостями KLM и $P_1L_1Q_1$?

С—2.1. Перпендикуляр к плоскости

Вариант 1

Из точки P на плоскость α проведён перпендикуляр PQ. На плоскости α находится прямая a. По прямой a движется в одном направлении отрезок AB. PO = AB = |Oa| = 1.

- **1.** Пусть QB = 1. Чему равно PA?
- **2.** Пусть PA = 2. Чему равно QB?
- **3.** Может ли QB = PA при некотором положении точки A?
- **4.** В каком положении отрезок AB виден из точки P под наибольшим углом?

Вариант 2

Из точки P на плоскость α проведён перпендикуляр PQ. На плоскости α находится прямая a. По прямой a движется в одном направлении отрезок AB. PQ = AB = |Qa| = 1.

- **1.** Пусть QA = 1. Чему равно PB?
- **2.** Пусть PB = 2. Чему равно QA?
- **3.** Может ли QA = PB при некотором положении точки A?
- **4.** В каком положении отрезок AB виден из точки P под наибольшим углом?

С—2.2. Признак перпендикулярности прямой и плоскости

Вариант 1

В тетраэдре ABCD все углы при вершине D прямые. По ребру BC от точки B к точке C движется точка K. Пусть KD = x. DA = DB = 1, DC = 2.

- 1. Сколько прямоугольных граней в этом тетраэдре?
- **2.** Докажите, что при любом x:
 - a) AK > AD;
 - δ) AK > KD.
- **3.** а) Выразите как функцию от x площадь треугольника AKD.
 - б) Установите границы, в которых она лежит.
- **4.** Может ли:
 - а) прямая DK быть перпендикулярна плоскости ABC;
 - б) угол KDL быть прямым, если точка L находится на ребре AC и BK = AL?

Вариант 2

В тетраэдре ABCD все углы при вершине D прямые. По ребру AB от точки A к точке B движется точка K. Пусть KD = x. DA = DC = 1, DB = 3.

- 1. Сколько прямоугольных граней в этом тетраэдре?
- **2.** Докажите, что при любом x:
 - a) CK > CD;
 - б) CK > KD.
- **3.** а) Выразите как функцию от x площадь треугольника CKD.
 - б) Установите границы, в которых она лежит.
- **4.** Может ли:
 - а) прямая DK быть перпендикулярна плоскости ABC;
 - б) угол KDL быть прямым, если точка L находится на ребре BC и AK = CL?

С—2.3. Построение плоскости, перпендикулярной данной прямой

Вариант 1

Ребро правильного тетраэдра ABCD равно 2. Рассматриваются два сечения тетраэдра. Одно из них — площадью S_1 — перпендикулярно ребру AD, другое — площадью S_2 — перпендикулярно ребру BD. Оба они проходят через точку K на ребре AD.

- **1.** а) Нарисуйте первое сечение, когда точка K середина ребра AD.
 - б) Найдите его площадь.
- **2.** а) Нарисуйте второе сечение, когда точка K середина ребра AD.
 - б) Найдите его площадь.
- **3.** а) Нарисуйте оба сечения, когда точка K не середина ребра AD.
 - б) Пусть DK = x. Выразите $\frac{S_2}{S_1}$ как функцию от x.
 - в) Могут ли площади S_2 и S_1 быть равны?

Вариант 2

Ребро правильного тетраэдра ABCD равно 2. Рассматриваются два сечения тетраэдра. Одно из них — площадью S_1 — перпендикулярно ребру AB, другое — площадью S_2 — перпендикулярно ребру AD. Оба они проходят через точку K на ребре AB.

- **1.** а) Нарисуйте первое сечение, когда точка K середина ребра AB.
 - б) Найдите его площадь.
- **2.** а) Нарисуйте второе сечение, когда точка K середина ребра AB.
 - б) Найдите его площадь.
- **3.** а) Нарисуйте оба сечения, когда точка K не середина ребра AB.
 - б) Пусть AK = x. Выразите $\frac{S_2}{S_1}$ как функцию от x.
 - в) Могут ли площади S_2 и S_1 быть равны?

С—2.4. Параллельность и перпендикулярность

Вариант 1

К плоскости α проведён перпендикуляр AB ($A \in \alpha$), AB = 2. Через точку A проведена прямая a, перпендикулярная AB. На расстоянии 1 от прямой a на плоскости α находится точка C, и через неё проведён перпендикуляр CD к плоскости α (возможны два случая). CD = AC = 1.

- **1.** а) На прямой a взята точка K, такая, что BK = 3. Чему равна длина DK?
 - б) Можно ли на прямой a найти такую точку L, что BL = DL?
- **2.** а) На каком расстоянии от прямой a находится точка пересечения прямой BD и плоскости α ?
 - б) Пусть прямые AD и BC пересекаются в точке M. Из неё проводится перпендикуляр MN на плоскость α . Чему равна его длина?

Вариант 2

К плоскости α проведён перпендикуляр AB ($A \in \alpha$), AB = 1. Через точку A проведена прямая a, перпендикулярная AB. На расстоянии 4 от прямой a на плоскости α находится точка C, и через неё проведён перпендикуляр CD к плоскости α (возможны два случая). CD = 2, AC = 1.

- **1.** а) На прямой a взята точка K, такая, что BK = 2. Чему равна длина DK?
 - б) Можно ли на прямой a найти такую точку L, что BL = DL?
- **2.** а) На каком расстоянии от прямой a находится точка пересечения прямой BD и плоскости α ?
 - б) Пусть прямые AD и BC пересекаются в точке M. Из неё проводится перпендикуляр MN на плоскость α . Чему равна его длина?

С—2.5. Проведение перпендикуляра к плоскости

Вариант 1

 $ABCA_1B_1C_1$ — правильная треугольная призма, точка K — середина ребра $BB_1, AB=1, BB_1=\sqrt{3}$.

- 1. Нарисуйте перпендикуляр:
 - а) из точки K на грань $AA_1C_1C_1$;
 - б) из точки B на плоскость AKC;
 - в) из точки L середины ребра A_1C_1 на плоскость AKC;
 - Γ) из точки B_1 на плоскость AKC;
 - д) из точки A_1 на плоскость AKC.
- **2.** Чему равна длина самого длинного и самого короткого из построенных перпендикуляров?

Вариант 2

 $ABCA_1B_1C_1$ — правильная треугольная призма, точка K — середина ребра $AA_1, AB=1, AA_1=\sqrt{3}$.

- 1. Нарисуйте перпендикуляр:
 - а) из точки K на грань BB_1C_1C ;
 - б) из точки A на плоскость BKC;
 - в) из точки L середины ребра B_1C_1 на плоскость BKC;
 - г) из точки A_1 на плоскость BKC;
 - д) из точки C_1 на плоскость BKC.
- **2.** Чему равна длина самого длинного и самого короткого из построенных перпендикуляров?

С—2.6. Свойства перпендикулярных плоскостей

Вариант 1

Равносторонний треугольник ABC и прямоугольник ACDF лежат в перпендикулярных плоскостях, AB = 1, AF = 2.

- **1.** Сравните BF и BD.
- **2.** Вычислите расстояние между центром треугольника и центром симметрии прямоугольника.
- **3.** Пусть точка K переменная точка ломаной ABC. В каких границах находится расстояние от точки K до центра симметрии прямоугольника?
- **4.** Точка X начала движение из точки C по ломаной CBA, точка Y одновременно начала движение из точки A по отрезку AF. Они движутся с одной и той же постоянной скоростью до конца своего пути. Чему равны наибольшее и наименьшее расстояния XY?

Вариант 2

Равнобедренный треугольник ABC (AB = CB) и квадрат ACDF лежат в перпендикулярных плоскостях, AB = 2, AF = 1.

- **1.** Сравните BF и BD.
- **2.** Вычислите расстояние между точкой пересечения медиан треугольника и центром симметрии квадрата.
- **3.** Пусть точка K переменная точка ломаной AFD. В каких границах находится длина KB?
- **4.** Точка X начала движение из точки C по отрезку CB, точка Y одновременно начала движение из точки A по ломаной AFD. Они движутся с одной и той же постоянной скоростью до конца своего пути. Чему равны наибольшее и наименьшее расстояния XY?

С-2.7. Признак перпендикулярности плоскостей

Вариант 1

В основании пирамиды PABCD находится квадрат ABCD. Боковое ребро PB перпендикулярно основанию, PB = AB = 1.

- 1. Сколько боковых граней пирамиды перпендикулярно основанию?
- **2.** Будут ли перпендикулярны между собой грани *APD* и *CPD*?
- **3.** Проводится сечение пирамиды AKLD, где K лежит внутри PB, L лежит внутри PC.
 - а) Нарисуйте такое сечение.
 - б) Установите его форму.
 - в) Пусть $\angle KAB = \varphi$. Выразите площадь этого сечения как функцию от φ .
 - г) Может ли эта площадь равняться $\frac{1}{2}$?
- 4. Оцените периметр этого сечения.

Вариант 2

В основании пирамиды PABCD находится квадрат ABCD. Боковое ребро PA перпендикулярно основанию, PA = AB = 1.

- 1. Сколько боковых граней пирамиды перпендикулярно основанию?
- 2. Будут ли перпендикулярны между собой грани СРД и СРВ?
- **3.** Проводится сечение пирамиды CKLD, где K лежит внутри PA, L лежит внутри PB.
 - а) Нарисуйте такое сечение.
 - б) Установите его форму.
 - в) Пусть $\angle KDA = \varphi$. Выразите площадь этого сечения как функцию от φ .
 - г) Может ли эта площадь равняться $\frac{1}{2}$?
- 4. Оцените периметр этого сечения.

С—2.8. Параллельность плоскостей

Вариант 1

В тетраэдре ABCD ребро BD перпендикулярно грани ABC. BD = 1, $\angle ABC = 60^{\circ}$, AB = BC, точка K — середина ребра AC, BK = 1. Перпендикулярно DK через точку внутри DK проводится сечение тетраэдра.

- **1.** а) Нарисуйте такое сечение, когда оно проходит через точку B.
 - б) Докажите, что оно является равнобедренным треугольником.
 - в) Чему равна его площадь?
- 2. Может ли такое сечение быть равносторонним треугольником?
- 3. а) Докажите, что таким сечением может быть равнобокая трапеция.
 - б) В каких границах лежит площадь такого сечения?

Вариант 2

В тетраэдре ABCD ребро BD перпендикулярно грани ABC. BD=1, $\angle ABC=120^\circ$, AB=BC, точка K— середина ребра AC, BK=1. Перпендикулярно DK через точку внутри DK проводится сечение тетраэдра.

- **1.** а) Нарисуйте такое сечение, когда оно проходит через точку B.
 - б) Докажите, что оно является равнобедренным треугольником.
 - в) Чему равна его площадь?
- 2. Может ли такое сечение быть равносторонним треугольником?
- 3. а) Докажите, что таким сечением может быть равнобокая трапеция.
 - б) В каких границах лежит площадь такого сечения?

С—2.9. Параллельность прямой и плоскости

Вариант 1

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ AB = 1, $AA_1 = 2$. Проводится сечение этой призмы, проходящее через точку B_1 и параллельное A_1C_1 .

- **1.** а) Нарисуйте такое сечение, когда оно проходит через точку A.
 - б) Докажите, что в случае а) оно не является равносторонним треугольником.
 - в) Нарисуйте такое сечение, когда оно проходит через точку K середину AA_1 .
 - г) Докажите, что в случае в) оно является ромбом.
 - д) Чему равна площадь сечения в случае в)?
- **2.** Рассмотрим такое сечение, когда оно проходит через точку $L \in A_1 K$. Как изменяется его площадь по мере удаления точки L от точки A_1 ?
- 3. Могут ли в таком сечении призмы быть равны три стороны?

Вариант 2

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ AB = 1, $AA_1 = 2$. Проводится сечение этой призмы, проходящее через точку D и параллельное AC.

- **1.** а) Нарисуйте такое сечение, когда оно проходит через точку A_1 .
 - б) Докажите, что в случае а) оно не является равносторонним треугольником.
 - в) Нарисуйте такое сечение, когда оно проходит через точку K середину AA_1 .
 - г) Докажите, что в случае в) оно является ромбом.
 - д) Чему равна площадь сечения в случае в)?
- **2.** Рассмотрим такое сечение, когда оно проходит через точку $L \in AK$. Как изменяется его площадь по мере удаления точки L от точки A?
- 3. Могут ли в таком сечении призмы быть равны три стороны?

С—2.10. Ортогональное проектирование

Вариант 1

ABCD — правильный тетраэдр с ребром 2. Точка K — середина ребра CD, точка L — середина ребра BD, точка M — середина ребра AB, точка N — середина ребра AC.

- **1.** а) Нарисуйте проекцию сечения *KLMN* на плоскость *ACD*.
 - б) Докажите, что эта проекция является прямоугольником.
 - в) Чему равна площадь этой проекции?
- **2.** а) Нарисуйте проекцию данного тетраэдра на плоскость *KLMN*.
 - б) Докажите, что эта проекция является квадратом.
 - в) Найдите площадь этой проекции.

Вариант 2

ABCD — правильный тетраэдр с ребром 2. Точка K — середина ребра CD, точка L — середина ребра BD, точка M — середина ребра AB, точка N — середина ребра AC.

- **1.** а) Нарисуйте проекцию сечения *KLMN* на плоскость *BCD*.
 - б) Докажите, что эта проекция является прямоугольником.
 - в) Чему равна площадь этой проекции?
- **2.** а) Нарисуйте проекцию данного тетраэдра на плоскость *KLMN*.
 - б) Докажите, что эта проекция является квадратом.
 - в) Найдите площадь этой проекции.

С—3.1. Расстояние между двумя точками

Вариант 1

В четырёхугольной пирамиде *PABCD* все рёбра равны 1.

- **1.** Чему равно расстояние между серединой ребра PB и:
 - а) точкой M на ребре AD, такой, что $AM = \frac{1}{4}AD$;
 - б) серединой ребра AD?
- **2.** а) Пусть точка K лежит на ребре PB, а точка L на ребре AD, PK = DL = x. Выразите KL как функцию от x.
 - б) В каких границах лежит длина отрезка КL?
- **3.** Пусть точка K движется по ломаной PBCP, а точка L по ломаной DAPD. Движение начато одновременно и идёт с одной скоростью. В каких границах лежит длина отрезка KL?

Вариант 2

В четырёхугольной пирамиде РАВСО все рёбра равны 1.

- **1.** Чему равно расстояние между серединой ребра PA и:
 - а) точкой L на ребре CD, такой, что $DL = \frac{1}{4}DC$;
 - б) серединой ребра CD?
- **2.** а) Пусть точка K лежит на ребре PA, а точка L на ребре CD, PK = CL = x. Выразите KL как функцию от x.
 - б) В каких границах лежит длина отрезка КL?
- **3.** Пусть точка K движется по ломаной PABP, а точка L по ломаной CDPC. Движение начато одновременно и идёт с одной скоростью. В каких границах лежит длина отрезка KL?

С—3.2. Теорема о трёх перпендикулярах

Вариант 1

ABCD — ромб со стороной 1, $\angle A = \varphi$ ($\varphi < 90^\circ$). К плоскости ромба в точке C проведён перпендикуляр KC длиной 1.

- **1.** Пусть $\varphi = 60^{\circ}$.
 - а) Нарисуйте перпендикуляр из точки K на прямую AD.
 - б) Найдите расстояние от точки K до прямой AD.
- **2.** а) Нарисуйте перпендикуляр от точки K на прямую AB.
 - б) Найдите расстояние от точки K до отрезка AB.
- **3.** а) Нарисуйте перпендикуляр из точки A на плоскость KBD.
 - б) Найдите расстояние от точки A до треугольника KBD.
- **4.** В каких границах находится расстояние от точки K до треугольника ABD при изменении ϕ ?
- **5.** Может ли расстояние от точки B до плоскости AKD равняться расстоянию от точки B до треугольника AKD?

Вариант 2

ABCD — ромб со стороной 1, $\angle A = \varphi$ ($\varphi > 90^\circ$). К плоскости ромба в точке B проведён перпендикуляр KB длиной 1.

- **1.** Пусть $\varphi = 120^{\circ}$.
 - а) Нарисуйте перпендикуляр из точки K на прямую CD.
 - б) Найдите расстояние от точки K до прямой CD.
- **2.** а) Нарисуйте перпендикуляр из точки K на прямую AD.
 - б) Найдите расстояние от точки K до отрезка AD.
- **3.** а) Нарисуйте перпендикуляр из точки D на плоскость KAC.
 - б) Найдите расстояние от точки D до треугольника KAC.
- **4.** В каких границах находится расстояние от точки K до треугольника ACD при изменении ϕ ?
- **5.** Может ли расстояние от точки A до плоскости CKD равняться расстоянию от точки A до треугольника CKD?

С—3.3. Расстояние от точки до фигуры

Вариант 1

ABCD — правильный тетраэдр с ребром 1, AA_1 — его высота. Точка K движется по ней от точки A к точке A_1 .

- **1.** Вычислите расстояние от точки A_1 до каркаса тетраэдра. (Каркас тетраэдра это совокупность всех его рёбер.)
- **2.** Вычислите расстояние от точки *K* до каркаса тетраэдра, когда $KA = \frac{1}{2}$.
- **3.** Пусть траектория точки K такова: сначала от точки A по высоте AA_1 до некоторой точки, а затем от неё по прямой к ближайшей точке каркаса. Нарисуйте эту траекторию.
- **4.** При каком положении точки K расстояние от неё до каркаса является наибольшим?

Вариант 2

ABCD — правильный тетраэдр с ребром 1, BB_1 — его высота. Точка K движется по ней от точки B к точке B_1 .

- **1.** Вычислите расстояние от точки B_1 до каркаса тетраэдра. (Каркас тетраэдра это совокупность всех его рёбер.)
- **2.** Вычислите расстояние от точки *K* до каркаса тетраэдра, когда $KB = \frac{1}{2}$.
- **3.** Пусть траектория точки K такова: сначала от точки B по высоте BB_1 до некоторой точки, а затем от неё по прямой к ближайшей точке каркаса. Нарисуйте эту траекторию.
- **4.** При каком положении точки K расстояние от неё до каркаса является наибольшим?

С—3.4. Расстояние между фигурами

Вариант 1

Дан куб $ABCDA_1B_1C_1D_1$ с ребром 4. В грани ABCD расположен круг K_1 радиусом 1. Центр O_1 этого круга находится в центре нижнего основания.

- **1.** Пусть K_2 круг в плоскости $A_1B_1C_1$ с центром в точке A_1 радиусом 1.
 - а) Нарисуйте кратчайший отрезок между кругами K_1 и K_2 .
 - б) Вычислите расстояние между ними.
- **2.** Пусть круг K_2 радиусом 1 движется в плоскости $A_1B_1C_1$ так, что его центр O_2 движется по ребру A_1D_1 от точки A_1 к точке D_1 . В каких границах лежит расстояние между кругами K_1 и K_2 ?
- **3.** Пусть круг K_2 радиусом 1 продолжает двигаться параллельно самому себе так, что его центр O_2 движется по ребру D_1D от точки D_1 к точке D. В каких границах лежит расстояние между кругами K_1 и K_2 ?
- **4.** Пусть K_3 круг в грани CC_1D_1D с центром O_3 в центре грани и радиусом 1.
 - а) Нарисуйте кратчайший отрезок между кругами K_1 и K_3 .
 - б) Чему равно расстояние между кругами K_1 и K_3 ?

Вариант 2

Дан куб $ABCDA_1B_1C_1D_1$ с ребром 4. В грани ABCD расположен круг K_1 радиусом 1. Центр O_1 этого круга находится в центре нижнего основания.

- **1.** Пусть K_2 круг в плоскости $A_1B_1C_1$ с центром в точке B_1 радиусом 1.
 - а) Нарисуйте кратчайший отрезок между кругами K_1 и K_2 .
 - б) Вычислите расстояние между ними.
- **2.** Пусть круг K_2 радиусом 1 движется в плоскости $A_1B_1C_1$ так, что его центр O_2 движется по ребру B_1A_1 от точки B_1 к точке A_1 . В каких границах лежит расстояние между кругами K_1 и K_2 ?
- **3.** Пусть круг K_2 радиусом 1 продолжает двигаться параллельно самому себе так, что его центр O_2 движется по ребру A_1A от точки A_1 к точке A. В каких границах лежит расстояние между кругами K_1 и K_2 ?
- **4.** Пусть K_3 круг в грани AA_1B_1B с центром O_3 в центре грани и радиусом 1.
 - а) Нарисуйте кратчайший отрезок между кругами K_1 и K_3 .
 - б) Чему равно расстояние между кругами K_1 и K_3 ?

С—3.5. Расстояние в пространстве

Вариант 1

В четырёхугольной пирамиде PABCD основанием является квадрат ABCD, грань PCD — равнобедренный треугольник (PD = PC), перпендикулярный основанию. AD = 2, расстояние от точки P до основания равно 1. Точка K — середина ребра PB, точка L — середина ребра AD, точка Q — середина ребра CD.

- 1. Вычислите расстояние:
 - a) *KL*;
 - б) от точки Q до плоскости PAB;
 - в) от прямой AD до плоскости PCB;
 - Γ) от прямой BC до прямой PA;
 - \mathcal{L} д) от вершины \mathcal{L} до треугольника \mathcal{L} \mathcal{L}
- 2. Есть ли точка, которая равноудалена от всех:
 - а) вершин пирамиды;
 - б) плоскостей граней пирамиды?

Вариант 2

В четырёхугольной пирамиде PABCD основанием является квадрат ABCD, грань PBC — равнобедренный треугольник (PB = PC), перпендикулярный основанию. AD = 2, расстояние от точки P до основания равно 1. Точка K — середина ребра PA, точка L — середина ребра CD, точка Q — середина ребра BC.

- 1. Вычислите расстояние:
 - a) *KL*;
 - б) от точки Q до плоскости PAD;
 - в) от прямой CD до плоскости PAB;
 - Γ) от прямой AB до прямой PD;
 - д) от вершины B до треугольника PDC.
- 2. Есть ли точка, которая равноудалена от всех:
 - а) вершин пирамиды;
 - б) плоскостей граней пирамиды?

С—3.6. Угол между прямыми; угол между лучами

Вариант 1

 $ABCDA_1B_1C_1D_1$ — прямоугольный параллелепипед, $AD=1,\ DC=2,\ CC_1=3.$

- **1.** Найдите угол между прямыми A_1D и D_1C .
- **2.** Может ли угол между прямыми D_1X_1 и AC равняться 90°? (Точка X_1 лежит на ребре B_1C_1 .)
- **3.** Найдите угол α между прямыми B_1D и AC.
- **4.** В каких границах лежит угол β между прямыми AA_1 и DX_2 , где точка X_2 находится на ломаной $A_1B_1C_1$?
- **5.** Точка K лежит на ребре D_1D , точка L на ребре CC_1 , $D_1K = CL$. Определите вид угла между лучами AK и LD.

Вариант 2

 $ABCDA_1B_1C_1D_1$ — прямоугольный параллелепипед, $AD=1,\ DC=3,$ $CC_1=2.$

- **1.** Найдите угол между прямыми A_1D и D_1C .
- **2.** Может ли угол между прямыми D_1X_1 и AC равняться 90°? (Точка X_1 лежит на ребре B_1C_1 .)
- **3.** Найдите угол α между прямыми B_1D и AC.
- **4.** В каких границах лежит угол β между прямыми AA_1 и DX_2 , где точка X_2 находится на ломаной $A_1B_1C_1$?
- **5.** Точка K лежит на ребре CD, точка L на ребре D_1C_1 , $CK = D_1L$. Определите вид угла между лучами AK и LD.

С-3.7. Угол прямой с плоскостью

Вариант 1

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ AB = 1, $AA_1 = 2$.

- **1.** а) Вычислите угол, который образует с плоскостью основания этой призмы её диагональ B_1D .
 - б) С какой гранью этой призмы диагональ B_1D образует наибольший угол?
- **2.** Вычислите угол между диагональю B_1D и плоскостью ACC_1 .
- **3.** Пусть точка K движется по ребру DD_1 от точки D к точке D_1 . Как изменяется угол между диагональю B_1D и плоскостью AKC?

Вариант 2

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ AB = 1, $AA_1 = 2$.

- **1.** а) Вычислите угол, который образует с плоскостью основания этой призмы её диагональ A_1C .
 - б) С какой гранью этой призмы диагональ A_1C образует наибольший угол?
- **2.** Вычислите угол между диагональю A_1C и плоскостью BDD_1 .
- **3.** Пусть точка K движется по ребру CC_1 от точки C к точке C_1 . Как изменяется угол между диагональю A_1C и плоскостью BKD?

С—3.8. Двугранный угол. Угол между плоскостями

Вариант 1

В правильной призме $ABCA_1B_1C_1$ все рёбра равны 1.

- **1.** а) Вычислите угол между плоскостью AB_1C и плоскостью основания.
 - б) Вычислите угол между плоскостями AB_1C и AA_1C .
 - в) С какой боковой гранью призмы плоскость AB_1C образует меньший угол?
- **2.** Чему равен больший двугранный угол между плоскостями AB_1C и BCA_1 ?
- **3.** Пусть точка K движется по ребру A_1A от A_1 к A, а точка L движется по ребру B_1B от B_1 к B. Движение начато одновременно и с одной и той же скоростью. Как изменяется угол между плоскостями ACL и BCK?

Вариант 2

В правильной призме $ABCA_1B_1C_1$ все рёбра равны 1.

- **1.** а) Вычислите угол между плоскостью A_1C_1B и плоскостью основания.
 - б) Вычислите угол между плоскостями A_1C_1B и AC_1C .
 - в) С какой боковой гранью призмы плоскость A_1C_1B образует меньший угол?
- **2.** Чему равен больший двугранный угол между плоскостями A_1C_1B и B_1C_1A ?
- **3.** Пусть точка K движется по ребру AA_1 от A к A_1 , а точка L движется по ребру BB_1 от B к B_1 Движение начато одновременно и с одной и той же скоростью. Как изменяется угол между плоскостями A_1C_1L и B_1C_1K ?

С—3.9. Площадь ортогональной проекции

Вариант 1

В правильной треугольной пирамиде PABCAB = 1, $\angle APB = \varphi$.

- **1.** а) Нарисуйте проекцию грани PAB на плоскость ABC.
 - б) Чему равна площадь этой проекции?
- **2.** Пусть S_1 площадь проекции грани PAB на плоскость PAC.
 - а) Найдите S_1 .
 - б) При каком угле φ величина S_1 составляет $\frac{1}{3}$ от площади боковой грани?
 - в) При каком угле ϕ величина S_1 равна площади боковой грани?
- **3.** Могут ли быть равны площади проекций грани *PAB* на плоскости остальных граней?

Вариант 2

В правильной треугольной пирамиде $PABC\ PA = 1$, $\angle APB = \varphi$.

- **1.** а) Нарисуйте проекцию грани *PBC* на плоскость *ABC*.
 - б) Чему равна площадь этой проекции?
- **2.** Пусть S_1 площадь проекции грани PBC на плоскость PAC.
 - а) Найдите S_1 .
 - б) При каком угле φ величина S_1 составляет $\frac{1}{3}$ от площади боковой грани?
 - в) При каком угле ϕ величина S_1 равна площади боковой грани?
- **3.** Могут ли быть равны площади проекций грани *PBC* на плоскости остальных граней?

С—3.10. Трёхгранный угол

Вариант 1

В трёхгранном угле с вершиной O и лучами a, b, $c \angle ca = \angle cb = 90^\circ$, $\angle ab = 120^\circ$. Внутри угла проведён луч Ox. Пусть $\angle xa = \angle xb = \alpha$.

- **1.** а) Чему равен угол β между лучом x и плоскостью, в которой лежат лучи a, b?
 - б) Чему равен угол ϕ между лучами x и c?
 - в) Может ли $\angle xc = \alpha$?
- **2.** а) Докажите, что лучи a и b образуют с плоскостью, проходящей через лучи c и x, равные углы.
 - б) Найдите величину этого угла.
- **3.** Установите вид двугранного угла с ребром x, одна грань которого проходит через луч a, а другая через луч b.

Вариант 2

В трёхгранном угле с вершиной O и лучами a, b, $c \angle ca = \angle cb = 90^{\circ}$, $\angle ab = 60^{\circ}$. Внутри угла проведён луч Ox. Пусть $\angle xa = \angle xb = \alpha$.

- **1.** а) Чему равен угол β между лучом x и плоскостью, в которой лежат лучи a, b?
 - б) Чему равен угол ϕ между лучами x и c?
 - в) Может ли $\angle xc = \alpha$?
- **2.** а) Докажите, что лучи a и b образуют с плоскостью, проходящей через лучи c и x, равные углы.
 - б) Найдите величину этого угла.
- **3.** Установите вид двугранного угла с ребром x, одна грань которого проходит через луч a, а другая через луч b.

С—3.11. Углы

Вариант 1

В трёхгранном угле с вершиной O и рёбрами OA, OB, OC угол AOB прямой. $\angle AOC = \angle BOC = 120^\circ$. В нём проведён луч OD.

- 1. Пусть $\angle AOD = \angle BOD = 60^{\circ}$.
 - а) Найдите угол между лучом *OD* и плоскостью *OAB*.
 - б) Найдите угол между лучами *OD* и *OC*.
- **2.** Пусть $\angle AOD = \angle BOD = 45^{\circ}$. Найдите угол между лучом OD и плоскостью $A_1B_1C_1$, если точки A_1 , B_1 , C_1 находятся на лучах OA, OB, OC соответственно, причём $OA_1 = OB_1 = OC_1$.
- **3.** Можно ли провести луч *OD* так, чтобы двугранный угол с ребром *OD* и полуплоскостями *AOD*, *COD* равнялся двугранному углу с ребром *OD* и полуплоскостями *AOD*, *BOD*?

Вариант 2

В трёхгранном угле с вершиной O и рёбрами OA, OB, OC угол COB прямой. $\angle AOC = \angle AOB = 120^\circ$. В нём проведён луч OD.

- 1. Пусть $\angle BOD = \angle COD = 60^{\circ}$.
 - а) Найдите угол между лучом ОО и плоскостью ОВС.
 - б) Найдите угол между лучами OD и OA.
- **2.** Пусть $\angle BOD = \angle COD = 45^{\circ}$. Найдите угол между лучом OD и плоскостью $A_1B_1C_1$, если точки A_1 , B_1 , C_1 находятся на лучах OA, OB, OC соответственно, причём $OA_1 = OB_1 = OC_1$.
- **3.** Можно ли провести луч *OD* так, чтобы двугранный угол с ребром *OD* и полуплоскостями *BOD*, *COD* равнялся двугранному углу с ребром *OD* и полуплоскостями *AOD*, *BOD*?

С—4.1. Определение сферы и шара

Вариант 1

Вершины равностороннего треугольника ABC, имеющего сторону a, лежат на сфере с центром в точке O и радиусом R. Расстояние от O до треугольника ABC равно b.

- **1.** а) Пусть R = a = 1. Вычислите b.
 - б) Докажите, что $R^2 = \frac{a^2}{3} + b^2$.
 - в) Что происходит с b при увеличении a (в данной сфере)?
 - г) Пусть сторона a увеличилась в 2 раза. Может ли при этом расстояние b уменьшиться в 2 раза?
- **2.** Рассмотрим ещё одну сферу с центром в точке O, которая касается всех сторон треугольника ABC.
 - а) Пусть R = a = 1. Вычислите расстояние между этими сферами.
 - б) Что происходит с расстоянием между этими сферами при увеличении b?
 - в) Что происходит с этим расстоянием при увеличении а?

Вариант 2

Вершины квадрата ABCD, имеющего сторону a, лежат на сфере с центром в точке O и радиусом R. Расстояние от O до квадрата ABCD равно b.

- **1.** а) Пусть R = a = 1. Вычислите b.
 - б) Докажите, что $R^2 = \frac{a^2}{2} + b^2$.
 - в) Что происходит с b при увеличении a (в данной сфере)?
 - г) Пусть сторона a увеличилась в 2 раза. Может ли при этом расстояние b уменьшиться в 2 раза?
- **2.** Рассмотрим ещё одну сферу с центром в точке O, которая касается всех сторон квадрата ABCD.
 - а) Пусть R = a = 1. Вычислите расстояние между этими сферами.
 - б) Что происходит с расстоянием между этими сферами при увеличении b?
 - в) Что происходит с этим расстоянием при увеличении а?

С—4.2. Сечение шара (сферы) плоскостью

Вариант 1

Дана сфера радиусом 1. На расстоянии 2 от неё находится прямая. Через неё проведены две плоскости, образующие между собой угол ф. Они пересекают данную сферу по равным окружностям.

- 1. Чему равен радиус этих окружностей?
- 2. В каких границах находится при изменении ф расстояние между:
 - а) центрами этих окружностей;
 - б) самими окружностями?
- **3.** Может ли на данной сфере находиться окружность, имеющая с каждой из данных окружностей одну общую точку и равная этим окружностям?

Вариант 2

Дана сфера радиусом 2. На расстоянии 1 от неё находится прямая. Через неё проведены две плоскости, образующие между собой угол ф. Они пересекают данную сферу по равным окружностям.

- 1. Чему равен радиус этих окружностей?
- 2. В каких границах находится при изменении ф расстояние между:
 - а) центрами этих окружностей;
 - б) самими окружностями?
- **3.** Может ли на данной сфере находиться окружность, имеющая с каждой из данных окружностей одну общую точку и равная этим окружностям?

С—4.3. Плоскость, касательная к сфере

Вариант 1

Сфера с центром O и радиусом 1 касается плоскости α в точке A. Точка B лежит на этой сфере, и удалена от плоскости α на расстояние, меньшее 1. Через точку B проходит плоскость β , касательная к этой сфере. Плоскости α и β пересекаются по прямой p, прямая OB пересекает плоскость α в точке C, угол между прямой OB и плоскостью α равен ϕ .

- 1. Чему равен угол между плоскостями α и β?
- **2.** а) Чему равно расстояние от точки C до прямой p, когда $\varphi = 45^{\circ}$?
 - б) Что происходит с этим расстоянием при увеличении ф?
 - в) Может ли расстояние от точки C до прямой p равняться 1?

Вариант 2

Сфера с центром O и радиусом 1 касается плоскости α в точке A. Точка B лежит на этой сфере, и удалена от плоскости α на расстояние, большее 1. Через точку B проходит плоскость β , касательная к этой сфере. Плоскости α и β пересекаются по прямой p, прямая OB пересекает плоскость α в точке C, угол между прямой OB и плоскостью α равен ϕ .

- 1. Чему равен угол между плоскостями α и β?
- **2.** а) Чему равно расстояние от точки C до прямой p, когда $\phi = 45^{\circ}$?
 - б) Что происходит с этим расстоянием при увеличении ф?
 - в) Может ли расстояние от точки C до прямой p равняться 1?

С—4.4. Цилиндр

Вариант 1

Осевое сечение цилиндра — прямоугольник AA_1B_1B , в котором AB — диаметр основания цилиндра и равен 2, $AA_1 = 1$. Точки K и L начинают одновременно двигаться по окружностям оснований цилиндра по часовой стрелке со скоростью v = 1. Точка K движется от A_1 к B_1 , точка L — от B к A.

- **1.** Вычислите в момент времени t:
 - a) *KL*;
 - б) угол ϕ между прямой KL и плоскостью осевого сечения $AA_1B_1B_2$;
 - в) угол, под которым виден отрезок KL из точки A.
- **2.** Пусть расстояние от точки K до осевого сечения AA_1B_1B равно d. Чему равно расстояние до него же от точки L?
- **3.** Пусть точка K наиболее удалена от плоскости осевого сечения AA_1B_1B . Чему равно в этот момент расстояние от KL до:
 - a) AA_1 ; 6) AB?

Вариант 2

Осевое сечение цилиндра — прямоугольник AA_1B_1B , в котором AB — диаметр основания цилиндра и равен 2, $AA_1=1$. Точки K и L начинают одновременно двигаться по окружностям оснований цилиндра против часовой стрелки со скоростью v=1. Точка K движется от A_1 к B_1 , точка L — от B к A.

- **1.** Вычислите в момент времени t:
 - a) *KL*:
 - б) угол ϕ между прямой KL и плоскостью осевого сечения AA_1B_1B ;
 - в) угол, под которым виден отрезок KL из точки A.
- **2.** Пусть расстояние от точки K до осевого сечения AA_1B_1B равно d. Чему равно расстояние до него же от точки L?
- **3.** Пусть точка K наиболее удалена от плоскости осевого сечения AA_1B_1B . Чему равно в этот момент расстояние от KL до:
 - a) AA_1 ; 6) AB?

С—4.5. Конус

Вариант 1

Образующая конуса равна 2, а угол в осевом сечении при вершине конуса равен 90°. Проводится сечение конуса в виде равнобедренного треугольника с углом при вершине 60°.

- **1.** Пусть эти сечения пересекают основание конуса по параллельным хордам. Вычислите:
 - а) расстояние между этими параллельными хордами;
 - б) угол α, который составляют между собой плоскости данного сечения и осевого сечения.
- **2.** Пусть эти сечения пересекают основание конуса по хордам, имеющим общий конец. Вычислите:
 - а) расстояние между другими концами этих хорд;
 - б) угол β, который составляют между собой плоскости данного сечения и осевого сечения.

Вариант 2

Образующая конуса равна 2, а угол в осевом сечении при вершине конуса равен 120°. Проводится сечение конуса в виде равнобедренного треугольника с углом при вершине 90°.

- **1.** Пусть эти сечения пересекают основание конуса по параллельным хордам. Вычислите:
 - а) расстояние между этими параллельными хордами;
 - б) угол α, который составляют между собой плоскости данного сечения и осевого сечения.
- **2.** Пусть эти сечения пересекают основание конуса по хордам, имеющим общий конец. Вычислите:
 - а) расстояние между другими концами этих хорд;
 - б) угол β, который составляют между собой плоскости данного сечения и осевого сечения.

С—4.6. Усечённый конус

Вариант 1

Осевое сечение усечённого конуса представляет собой трапецию T с основаниями 4 и 2 и боковой стороной, равной 2. В этом усечённом конусе проведено сечение, являющееся трапецией T', основания которой параллельны основаниям трапеции в осевом сечении.

- **1.** Пусть угол между плоскостями этих трапеций равен ϕ . Чему равна площадь трапеции T '?
- **2.** При каком угле ϕ площадь проекции T на плоскость осевого сечения составляет половину площади осевого сечения?
- **3.** В каких границах находится площадь трапеции T при изменении φ ?

Вариант 2

Осевое сечение усечённого конуса представляет собой трапецию T с основаниями 2 и 1 и боковой стороной, равной 1. В этом усечённом конусе проведено сечение, являющееся трапецией T', основания которой параллельны основаниям данной трапеции.

- **1.** Пусть угол между плоскостями этих трапеций равен ϕ . Чему равна площадь трапеции T '?
- **2.** При каком угле ϕ площадь проекции T на плоскость осевого сечения составляет половину площади осевого сечения?
- **3.** В каких границах находится площадь трапеции T' при изменении ϕ ?

С—4.7. Тела

Вариант 1

В правильной четырёхугольной пирамиде PABCD высота PQ равна 4, а диагональ основания равна 12.

- **1.** С центром в середине высоты этой пирамиды в плоскости, перпендикулярной этой высоте, проводится окружность радиусом 2. Проходит ли она через внешние точки этой пирамиды?
- **2.** Линия *F* образована всеми точками *X*, такими, что XP = XQ = a.
 - а) При каком значении a линия F состоит только из внутренних точек пирамиды?
 - б) При каком значении a она содержит четыре граничные точки пирамиды?
 - в) Пусть a = 3. Сравните длину той части линии F, которая проходит через внутренние точки пирамиды, с длиной той части линии, которая проходит через внешние точки пирамиды. (Граничные точки пирамиды при нахождении длины можно отнести и к внутренним, и к внешним.)

В правильной четырёхугольной пирамиде PABCD высота PQ равна 2, а диагональ основания равна 6.

- С центром в середине высоты этой пирамиды в плоскости, перпендикулярной этой высоте, проводится окружность радиусом 1. Докажите, что она содержит внешние точки этой пирамиды.
- **2.** Линия *F* образована всеми точками *X*, такими, что XP = XQ = a.
 - а) При каком значении a линия F состоит только из внутренних точек пирамиды?
 - б) При каком значении a она содержит четыре граничные точки пирамиды?
 - в) Пусть a = 1,5. Сравните длину той части линии F, которая проходит через внутренние точки пирамиды, с длиной той части линии, которая проходит через внешние точки пирамиды. (Граничные точки пирамиды при нахождении длины можно отнести и к внутренним, и к внешним.)

КОНТРОЛЬНЫЕ РАБОТЫ

К—1

Вариант 1

ABCD — правильный тетраэдр, ребро которого равно 6. Точка K — середина AD, точка L лежит на ребре AC, точка M лежит на ребре BD.

- **1.** Нарисуйте сечение тетраэдра, проходящее через точки K, L, M, если:
 - a) CL = 2, DM = 2;
 - б) CL = 3, DM = 3.
- **2.** а) Пусть CL = 2. Где должна находиться на ребре BD точка M, чтобы сечение тетраэдра плоскостью KLM было трапецией?
 - б) Для трапеции, полученной в пункте а), вычислите длину *LM*.
- **3.** Пусть точка M середина BD. Рассматриваются всевозможные трапеции с основанием KM, являющиеся сечениями этого тетраэдра. В каких границах лежит длина диагонали таких трапеций?
- **4.** Пусть точка M середина BD, точка L лежит на AC, CL = 2, точка N лежит на BC, CN = 2. Чему равна длина отрезка, лежащего в тетраэдре, проходящего через точку N и пересекающего прямые AD и LM?
- **5.** Может ли площадь сечения, проходящего через точки K и M (M середина BD):
 - а) равняться 25;
 - б) быть больше 15?

ABCD — правильный тетраэдр, ребро которого равно 6. Точка K — середина CD, точка L лежит на ребре BC, точка M лежит на ребре AD.

- **1.** Нарисуйте сечение тетраэдра, проходящее через точки K, L, M, если:
 - a) BL = 2, DM = 2;
 - б) BL = 3, DM = 3.
- **2.** а) Пусть BL = 2. Где должна находиться на ребре AD точка M, чтобы сечение тетраэдра плоскостью KLM было трапецией?
 - б) Для трапеции, полученной в пункте а), вычислите длину *LM*.
- **3.** Пусть точка M середина AD. Рассматриваются всевозможные трапеции с основанием KM, являющиеся сечениями этого тетраэдра. В каких границах лежит длина диагонали таких трапеций?
- **4.** Пусть точка M середина AD, точка L лежит на BC, BL = 2, точка N лежит на AC, AN = 2. Чему равна длина отрезка, лежащего в тетраэдре, проходящего через точку N и пересекающего прямые BD и LM?
- **5.** Может ли площадь сечения, проходящего через точки K и M (M середина AD):
 - а) равняться 25;
 - б) быть больше 15?

К—2

Вариант 1

Основанием четырёхугольной пирамиды PABCD является ромб ABCD. Грани PAB и PBC перпендикулярны основанию, $\angle ABC = 60^{\circ}$, PB = BA = 1.

- **1.** а) Нарисуйте сечение этой пирамиды, проходящее через ребро AC, плоскостью, перпендикулярной PD.
 - б) Вычислите его площадь.
- **2.** а) Нарисуйте сечение этой пирамиды, проходящее через ребро AC, плоскостью, параллельной PD.
 - б) Вычислите его площадь.
- **3.** а) Нарисуйте сечение этой пирамиды, проходящее через ребро AC, плоскостью, перпендикулярной плоскости ABC.
 - б) Вычислите его площадь.
- **4.** Можно ли сравнить площади, полученные в задачах 1—3, без их вычисления?
- **5.** Проводятся сечения, перпендикулярные ребру *PD*. Какое из них имеет наибольшую площадь проекции на плоскость основания?

Основанием четырёхугольной пирамиды PABCD является ромб ABCD. Грани PAB и PBC перпендикулярны основанию, $\angle ABC = 120^{\circ}$, PB = BA = 1.

- **1.** а) Нарисуйте сечение этой пирамиды, проходящее через ребро AC, плоскостью, перпендикулярной PD.
 - б) Вычислите его площадь.
- **2.** а) Нарисуйте сечение этой пирамиды, проходящее через ребро AC, плоскостью, параллельной PD.
 - б) Вычислите его площадь.
- **3.** а) Нарисуйте сечение этой пирамиды, проходящее через ребро AC, плоскостью, перпендикулярной плоскости ABC.
 - б) Вычислите его площадь.
- **4.** Можно ли расположить в порядке возрастания площади, полученные в задачах 1—3, без их вычисления?
- **5.** Проводятся сечения, перпендикулярные ребру *PD*. Какое из них имеет наибольшую площадь проекции на плоскость основания?

К—3

Вариант 1

Две правильные пирамиды DABC и FABC имеют общее основание ABC и расположены по разные стороны от него. Все плоские углы при вершинах D и F прямые. Боковое ребро каждой пирамиды равно 1.

- 1. Вычислите расстояние:
 - а) от точки C до плоскости ADF;
 - б) от точки D до треугольника BCF.
- 2. Найдите угол:
 - а) между прямыми AD и BF;
 - б) между прямой AD и плоскостью BCF;
 - в) между плоскостями ACD и BCF.
- **3.** Найдите площадь проекции грани ADB на плоскость BCF.

Вариант 2

Две правильные пирамиды DABC и FABC имеют общее основание ABC и расположены по разные стороны от него. Все плоские углы при вершинах D и F прямые. AB = 1.

- 1. Вычислите расстояние:
 - а) от точки B до плоскости ADF;
 - б) от точки F до треугольника BCD.
- 2. Найдите угол:
 - а) между прямыми AD и BF;
 - б) между прямой AD и плоскостью BCF;
 - в) между плоскостями ACD и BCF.
- **3.** Найдите площадь проекции грани ADB на плоскость BCF.

К—4

Вариант 1

Плоскость α является опорной для конуса и шара, причём проходит она через основание конуса. Шар и конус имеют единственную общую точку K и лежат с одной стороны от α . Радиус шара равен R, образующая конуса равна L и составляет с основанием угол ϕ .

- **1.** На каком расстоянии от плоскости α находится точка K:
 - а) если L = 2, R = 1, $\varphi = 60^{\circ}$;
 - б) в общем случае?
- **2.** Находятся ли на одной прямой центр шара, центр основания конуса и точка K, если L=2, R=1, $\phi=60^{\circ}$?
- **3.** Через точку K проводится плоскость β , параллельная плоскости α . Могут ли быть равны сечения шара и конуса плоскостью β ?
- **4.** Пусть цилиндр имеет одну общую внутри образующей его поверхности точку и с конусом, и с шаром, а плоскость α является опорной для цилиндра и проходит через его образующую. При этом цилиндр находится в том же полупространстве, что конус и шар, а ось цилиндра перпендикулярна плоскости, проходящей через ось конуса и центр шара. Чему равен наименьший радиус основания такого цилиндра, если L=2, R=1, $\phi=60^{\circ}$?

Плоскость α является опорной для конуса и шара, причём проходит она через вершину конуса перпендикулярно его высоте. Шар и конус имеют единственную общую точку K и лежат с одной стороны от α . Радиус шара равен R, образующая конуса равна L и составляет с основанием угол ϕ .

- **1.** На каком расстоянии от плоскости α находится точка K:
 - а) если L = 2, R = 1, $\varphi = 60^{\circ}$;
 - б) в общем случае?
- **2.** Находятся ли на одной прямой центр шара, центр основания конуса и точка K, если L=2, R=1, $\phi=60^{\circ}$?
- **3.** Через точку K проводится плоскость β , параллельная плоскости α . Могут ли быть равны сечения шара и конуса плоскостью β ?
- **4.** Пусть цилиндр имеет одну общую внутри образующей его поверхности точку и с конусом, и с шаром, а плоскость α является опорной для цилиндра и проходит через его образующую. При этом цилиндр находится в том же полупространстве, что конус и шар, а ось цилиндра перпендикулярна плоскости, проходящей через ось конуса и центр шара. Чему равен наименьший радиус основания такого цилиндра, если L=2, R=1, $\varphi=60^{\circ}$?