1) Как известно, петух и индюк геометрически подобны (все их линейные размеры отличаются в 2 раза). Пренебрегая внутренней структурой животных сравните времена, за которые прожариваются обе птицы.

В этой задаче невозможно дать определённый ответ. Это вызвано тем, что при прожаривании птиц задействованы два неизвестных коэффициента. Первый отвечает за скорость передачи тепла от окружающей среды к птице, а второй за теплоперенос внутри животного. В зависимости от соотношения коэффициентов ответ может лежать в диапазоне от 2 до 4.

Если второй коэффициент много больше первого, то внутренность птицы в любой момент можно считать равномерно нагретой. Тогда при равных температурах птиц мощности, поглощаемые ими из среды, отличаются в 4 раза, так как площадь индюка в 4 раза больше. А так как масса индюка в 8 раз больше, чем у курицы, и их теплоёмкости можно считать равными, то для прожарки индюка требуется в 8 раз больше тепла, то есть в 2 раза больше времени, чем для курицы.

Если же среда активно отдаёт тепло животным то их поверхность практически моментально нагревается до температуры окружающей среды. В таком случае распределение температур во внутренности птиц будет подобным. Мощность теплопереноса между любыми двумя подобными слоями пропорциональна их площади и обратно пропорциональна толщине слоя. То есть мощности при заданной разности температур отличаются в 2 раз. А так как для прожарки индюка требуется в 8 раз больше тепла, то времени потребуется в 4 раза больше.

2) Космический корабль снабдили пушкой, стреляющей снарядами со скоростями V. Такой снаряд в неподвижном состоянии способен разорваться на два меньших со скоростями v_{01} и v_{02} . Найдите, максимальный угол под которым могут находиться космические корабли противника, чтобы их можно было поразить одним выстрелом.

В силу ЗСИ один из осколков после разрыва должен полететь в направлении, составляющем угол меньший $\pi/2$ c $ec{V}$. Кроме того осколки обязательно разлетятся в разные стороны относительно прямой, содержащей траекторию снаряда. Отсюда следует, чтострелять необходимо в тот угол, под которым видны противника. Минимальный угол разлёта осколков имеет вершину на нашем корабле. Таким образом нам достаточно посчитать лишь максимальный угол θ_m под которым могут разлететься осколки.

Пусть в СО «снаряд до разрыва» один из осколков полетел со скоростью v , составляющей угол θ_0 с \vec{V} . Тогда, как видно из рисунка, в лабораторной СО угол, на который отклонился ЭТОТ осколок, определяется равенством:

 $tg \theta = \frac{v_0 \sin \theta_0}{V + v_0 \cos \theta_0} \quad .$

В силу ЗСИ для второго осколка $\,\theta_0\,$ следует заменить на $\,\pi\!-\!\theta_0\,$. В таком случае угол разлёта осколков можно определить по формуле тангенса суммы:

$$tg(\theta_1 + \theta_2) = \frac{tg\theta_1 + tg\theta_2}{1 - tg\theta_1 tg\theta_2} = \frac{(v_1 + v_2)V\sin\theta_0}{V^2 - v_1v_2 + V(v_1 - v_2)\cos\theta_0}$$

Найдём экстремум этого выражения. Понятно, что не умаляя общности можно считать, что $v_1 \ge v_2$, а $\theta_0 \in [0,\pi]$. Введём обозначения $t \equiv \cos\theta_0$, $c \equiv \frac{V(v_1-v_2)}{V^2-v_1v_2}$ и будем искать экстремум равносильного выражения _____

$$x = \frac{v_1 - v_2}{v_1 + v_2} \frac{tg(\theta_1 + \theta_2)}{c} = \frac{\sqrt{1 - t^2}}{1 + ct} .$$

При $c\!<\!0$ x может быть равен 0. Тогда угол разлёта будет достигать π . Если же $c\!>\!0$, то приводя к квадратному уравнению и решая его, находим

$$t = \frac{-cx^2 \pm \sqrt{c^2x^2 + 1 - x^2}}{c^2x^2 + 1}$$

Так как $t \in [-1;1]$, то следует выбрать знак +. Отсюда видно, что $x \le \frac{1}{1-c^2}$ при 0 < c < 1 , и x не ограничен в противном случае, при том особым является значение

$$c=1=\frac{V(v_1-v_2)}{V^2-v_1v_2} \Rightarrow V=v_1$$
.

Заметим, что если $tg \, \theta_{\scriptscriptstyle m} = \frac{v_1 + v_2}{v_1 - v_2} \frac{c}{1 - c^2}$, то $\sin \theta_{\scriptscriptstyle m} = \sqrt{\frac{tg^2 \theta_{\scriptscriptstyle m}}{1 + tg^2 \theta_{\scriptscriptstyle m}}} = \frac{V \left(v_1 + v_2\right)}{V^2 + v_1 v_2} \ .$

Объединяя рассмотренные случаи и добавляя предельные получим ответ:

$$\theta_{m} = \begin{cases} \pi, V < v_{1} \\ \frac{\pi}{2} - 0, V = v_{1} \\ \arcsin \frac{V(v_{1} + v_{2})}{V^{2} + v_{1}v_{2}}, V > v_{1} \end{cases}.$$